skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brower-Sinning, Rachel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Data science pipelines to train and evaluate models with machine learning may contain bugs just like any other code. Leakage between training and test data can lead to overestimating the model’s accuracy during offline evaluations, possibly leading to deployment of low-quality models in production. Such leakage can happen easily by mistake or by following poor practices, but may be tedious and challenging to detect manually. We develop a static analysis approach to detect common forms of data leakage in data science code. Our evaluation shows that our analysis accurately detects data leakage and that such leakage is pervasive among over 100,000 analyzed public notebooks. We discuss how our static analysis approach can help both practitioners and educators, and how leakage prevention can be designed into the development process. 
    more » « less